Neural Stain-Style Transfer Learning using GAN for Histopathological Images
نویسندگان
چکیده
Performance of data-driven network for tumor classification varies with stain-style of histopathological images. This article proposes the stain-style transfer (SST) model based on conditional generative adversarial networks (GANs) which is to learn not only the certain color distribution but also the corresponding histopathological pattern. Our model considers feature-preserving loss in addition to well-known GAN loss. Consequently our model does not only transfers initial stain-styles to the desired one but also prevent the degradation of tumor classifier on transferred images. The model is examined using the CAMELYON16 dataset.
منابع مشابه
An Exploration of Style Transfer Using Deep Neural Networks
Convolutional Neural Networks and Graphics Processing Units have been at the core of a paradigm shift in computer vision research that some researchers have called “the algorithmic perception revolution.” This thesis presents the implementation and analysis of several techniques for performing artistic style transfer using a Convolutional Neural Network architecture trained for large-scale imag...
متن کاملStyle Transfer for Anime Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN
Recently, with the revolutionary neural style transferring methods [1, 3, 4, 8, 17], creditable paintings can be synthesized automatically from content images and style images. However, when it comes to the task of applying a painting’s style to a anime sketch, these methods will just randomly colorize sketch lines as outputs (fig. 7) and fail in the main task: specific style tranfer. In this p...
متن کاملNeural Stereoscopic Image Style Transfer
Neural style transfer is an emerging technique which is able to endow daily-life images with attractive artistic styles. Previous work has succeeded in applying convolutional neural network (CNN) to style transfer for monocular images or videos. However, style transfer for stereoscopic images is still a missing piece. Different from processing a monocular image, the two views of a stylized ster...
متن کاملGenerative Image Modeling Using Style and Structure Adversarial Networks
Current generative frameworks use end-to-end learning and generate images by sampling from uniform noise distribution. However, these approaches ignore the most basic principle of image formation: images are product of: (a) Structure: the underlying 3D model; (b) Style: the texture mapped onto structure. In this paper, we factorize the image generation process and propose Style and Structure Ge...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.08543 شماره
صفحات -
تاریخ انتشار 2017